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ORIGINATION OF IN-PHASE OSCILLATIONS OF THIN PLATES

WITH AEROELASTIC INTERACTION

UDC 533.6.013.42A. L. Tukmakov

Synchronization of oscillations of thin elastic plates that are walls of a gas-filled channel is considered.
The gas motion is described by a system of Navier–Stokes equations, which is solved using the second-
order MacCormack method with time splitting. The motion of the channel walls is described by a
system of geometrically nonlinear dynamic equations of the theory of this plates, which is solved by
the finite-difference method. Kinematic and dynamic contact conditions are imposed at the interface
between the media. A numerical experiment is performed to determine typical dynamic regimes and
study the transition of the aeroelastic system to in-phase oscillations.
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The mutual effect of elements that compose a spatially coupled nonlinear system leads sometimes to syn-
chronization of oscillations of these elements [1, 2]. This phenomenon is observed in chemical reactions, coupled
generators, in oscillations of pendula of clocks on a common base, etc. In the present work, methods of mathematical
simulation are used to study synchronization of the phases of oscillations of elastic plates, which are sectors of the
upper and lower walls of a plane channel filled by air. Processes that occur in the gas and accompany synchronization
of the phases of oscillations of these plates for various parameters of external excitation are considered.

1. Model and System of Equations. We considered a plane channel filled by a gas. The upper and
lower walls of this channel are elastic within −l 6 x 6 l and rigid outside this interval (Fig. 1). Under asymmetric
excitation of oscillations of elastic walls by single pulses of external pressure, aeroelastic oscillations with different
amplitudes and phases are first observed. After a certain time, synchronization of oscillations of the channel walls
occurs due to their mutual influence through the gas medium.

To describe the gas motion in the channel, we used the Navier–Stokes equations for a compressible heat-
conducting gas [3], written in the Cartesian coordinate system:

qt + Fx +Gy = 0. (1)
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Fig. 1. Schematic of the channel.

In the domain with varied boundaries, system (1) is written in the time-dependent generic coordinates [4] ξ =
ξ(x, y, t), η = η(x, y, t), and τ = t:

q∗t + F ∗ξ +G∗η = 0.

Here
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This system was solved using the second-order explicit MacCormack method with time splitting [3, 5]. On a uniform
grid, the scheme contained predictor and corrector steps whose execution allowed one to pass to the next time layer:
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At the predictor and corrector steps, the derivatives with respect to ξ entering into the quantities F nj+1,k and F nj,k
were replaced by the first-order left and right differences, respectively; the derivatives with respect to η were replaced
by the second-order central differences. The derivatives with respect to η entering into the quantities Gn

j,k+1 and
Gn
j,k were approximated by the first-order left differences, and the derivatives with respect to ξ were approximated

by the central differences.
The x step of the finite-difference grid in the physical domain (x, y) was constant. In the near-wall regions

−d/2 6 y 6 −rd/2 and rd/2 6 y 6 d/2 (d is the channel height and r is a parameter defining the boundaries of the
near-wall regions), cells with a fixed refined step ∆y1 were formed. In the central region −rd/2 < y < rd/2, cells
with a larger step ∆y were formed. The region (ξ, η) was a unit square with uniform partition along both axes.

The splitting scheme for the central region −rd/2 < y < rd/2 was a sequence of symmetric one-dimensional
operators

qn+1
j,k = Pξ(∆t/2)Pη(∆t/2)Pη(∆t/2)Pξ(∆t/2)qnj,k.

Each one-dimensional operator included the predictor and corrector steps. For instance, the action of the
operator Pξ(∆t/2) on the vector-column qnj,k resulted in the transition to the intermediate value of q̄j,k in two steps:

q0
j,k = qnj,k −

∆t
∆ξ

(F nj+1,k − F nj,k), q̄j,k =
qnj,k + q0

j,k

2
− ∆t

4∆ξ
(F 0

j,k − F 0
j−1,k).

65



In regions of grid condensation, the splitting scheme included 2n one-dimensional operators Pη:

qn+1
j,k = Pξ(∆t/2)Pη(∆t/(2n)) · · ·Pη(∆t/(2n))Pξ(∆t/2)qnj,k

(n = ∆y/∆y1).
To describe the motion of elastic sectors of the walls, we used the system of geometrically nonlinear dynamic

equations of the theory of thin plates, which were obtained on the basis of the Kirchhoff–Love hypothesis [6]:
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Here Zτ and Zn are the tangential and normal components of the dynamic load, W and V are the flexure and
tangential displacement of fixed (Lagrangian) points of the median surface, h and ρn are the thickness and density of
the plate material, E is the elasticity modulus, and ν is Poisson’s ratio. Structural damping was taken into account
by the term α(∂W/∂t). Anchorage conditions were imposed on the longitudinal edges of the plates (Fig. 1):

W = 0, V = 0,
∂W

∂x
= 0 for x = ±l. (3)

At the initial time, the plates were motionless:

W = 0, V = 0,
∂W

∂t
= 0,

∂V

∂t
= 0 for t = 0, −l 6 x 6 l. (4)

The tangential component of the load was assumed to be zero, and the normal component contained the rigid and
follow-up parts. The follow-up character was determined by the excess pressure on the elastic surface. The rigid
component of loading was defined by an external pulsed excitation F (t) uniformly distributed over the plate surface,
and this component was independent of the plate-surface shape:

Zn = F (t) + p0 − p, Zτ = 0, F (t) = At for t < tin, F (t) = 0 for t > tin. (5)

Here p and p0 are the current and undisturbed pressure of the gas at the times t and t = 0 and tin is the time of
increasing of the external load pulse. System (2) with conditions (3)–(5) was solved by the finite-difference method
using second-order implicit difference schemes [7].

The change in the shape of elastic elements altered the computational domain geometry. The finite-difference
grid in the “physical” variables x and y and its mapping onto a motionless finite-difference grid in the variables ξ
and η were reconstructed at each time step. The reconstruction parameters ξx, ξy, ηx, ηy, xt, yt, ξt, and ηt entering
into the system of equations of gas motion, which was written in generic moving coordinates [3, 4], were determined,
and the transition to the next time layer was performed using the MacCormack scheme.

Kinematic and dynamic contact conditions were set at the interface between the media. No-slip conditions
were imposed on the solid surfaces for gas-velocity components: at points on the plate surface, they were assumed
to be equal to the corresponding components of the plate velocity. Uniform boundary conditions of the second kind
were set at all boundaries of the computational domain for density, energy, and temperature. The temperature,
density, and velocity of the gas were determined in internal nodes at the initial time.

The gas-dynamic part of the software package was tested by comparing the results of numerical simulation
with available experimental data [8]. The method used to model the dynamics of the elastic element was considered
in [9].

The numerical experiment included simulation of aeroelastic oscillations arising under loading of elastic walls
of the channel by single triangular pressure pulses whose duration was equal to half of the period of eigenoscillations
of the plates at the lower resonant frequency. The channel length was chosen such that the disturbances did not
reach the input and output boundaries within the time interval examined. The calculations for a channel of height
d = 0.03 m were performed for the following values of plate parameters: thickness h = 0.001 m, length 2l = 0.2 m,
elasticity modulus E = 1011 N/m2, Poisson’s ratio ν = 0.3, and density ρn = 4500 kg/m3. The number of nodes
of the finite-difference grid in solving the elastic problem was N = 60. The following characteristics were used for
the gas (air) filling the channel: ratio of specific heats γ = 1.4, universal gas constant R = 278 J/(kg ·K), initial
temperature of the undisturbed gas T0 = 290 K, and initial density ρ0 = 1.2 kg/m3. The results were obtained on
a computational grid with parameters Nj = 297, Nk = 40, N1 = 10, and r = 0.8 (N1 is the number of nodes in the
central region −rd 6 y 6 rd). The time step in the computations was ∆t = 3 · 10−8 sec.
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Fig. 2. Flexure of the plates (a), pressure on the channel axis for x = −0.1 m (b), and gas density on the channel axis
for x = 0 (c) versus time: curves 1 and 2 show the amplitudes of oscillations of the plate with an applied external
pressure pulse and the initially motionless plate, respectively.

2. Calculation Results. If the plates have identical parameters, then the dynamics of the aeroelastic
system and the process of synchronization are determined by characteristics of external exciting pulses F1(t) and
F2(t) acting on the elastic walls of the channel.

We consider a dynamic process arising under excitation of only one plate: F1(t) = At (t < tin) or F1(t) = 0
(t > tin) and F2(t) = 0. Figure 2a shows the flexure of the plates in time. The amplitude of oscillations of the plate
to which an external pressure pulse was applied decreases with time (the energy of oscillations of this plate is spent
on swinging the second plate and irradiating waves in the gas propagating along the channel). The increase in the
amplitude of oscillations of the initially motionless plate is accompanied by a decrease in the phase shift. At the
end of the first half-period, the phase shift of oscillations of the plates is π/2, but the phase difference of oscillations
decreases with time, and oscillations are synchronized both in terms of amplitude and phase at t > 0.01 sec (Fig. 2a).
Synchronization of motion of elastic elements is accompanied by a drastic decrease in the amplitude of oscillations
of gas pressure and density in the channel. Figure 2b shows the pressure versus time at the channel axis at a
point with a coordinate x = −0.1 m. Prior to the in-phase mode, plate oscillations are accompanied by significant
changes in the channel volume bounded by elastic walls, which leads to emergence of pressure oscillations with
steep leading fronts. Simultaneous displacements of the walls correspond to small changes in the channel volume;
as a result, pressure oscillations have a small amplitude and are close to harmonic in shape (Fig. 2b). Figure 2c
shows the density versus time at the channel axis at a point with a coordinate x = 0. Prior to excitation of
in-phase oscillations, the signal contains the excitation frequency (frequency of oscillating plates) and frequencies
multiple to the frequency of the first linear acoustic resonance of the gas column in the transverse direction f11 and
2f11 [8]; after synchronization, the spectral composition of the acoustic signal becomes different: the amplitude of
the component with the excitation frequency drastically decreases, despite the significant amplitude of oscillations
of the channel walls (Fig. 2a and c).
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Fig. 3. Flexure of the plates versus time for F1(t) = At (t < tin) or F1(t) = 0 (t > tin) and
F2(t) = −0.3F1(t) (a) and −0.99F1(t) (b); curves 1 and 2 show the amplitudes of oscillations of the
plate with an applied external pressure pulse and the initially motionless plate, respectively.

Another type of joint oscillations is observed if the initial excitation of the plates occurs in antiphase with
significantly different intensities of external pressure pulses. Figure 3a shows the flexure of the plates as a function
of time for F1(t) = At (t < tin) or F1(t) = 0 (t > tin) and F2(t) = −0.3F1(t). The process of synchronization of
amplitudes and phases occurs due to the increased duration of the period of oscillations of the plate to which the
pulse of lower intensity is applied. After synchronization, the amplitude of oscillations of the plates is higher than
that in the case of excitation of oscillations of one plate only. For F2(t) = −0.9F1(t), the process of synchronization
of oscillations occurs in a similar manner.

If the initial excitation of the plates occurs in antiphase with close intensities of external pressure pulses,
no in-phase oscillations arise in the system. Figure 3b shows the flexure of the plates as a function of time for
F1(t) = At (t < tin) or F1(t) = 0 (t > tin) and F2(t) = −0.99F1(t). Intense damping of oscillations of the elastic
walls is observed in this regime because of the fact that the pressure distribution in the gas is close to axisymmetric.
The gas-pressure growth near the channel axis with the plates moving toward the internal region leads to faster
damping of their amplitude. At the same time, pressure and density oscillations arising under antiphase excitation
of the plates occur with a higher intensity, as compared to the in-phase mode.

Thus, numerical simulation of interaction of aeroelastic coupled plates allowed us to reveal two most typical
dynamic modes. Under symmetric excitation, plate oscillations rapidly decay without any synchronization. In the
case of significantly asymmetric excitation, synchronization of the phases of the oscillating plates is observed due
to an increase in the period of oscillations of the plate with a lower amplitude.
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